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(57) ABSTRACT

Methods and systems provide a partitioned IP core and
hierarchical power management to reduce power consump-
tion and footprint size of an “always-on” pulse density
modulation (PDM) sensor system. The IP core may be
partitioned into a register transfer level (RTL) block and a
firmware block. The RTL may include a first stage decima-
tion filter, storage, and, optionally, a sound energy detector.
The firmware block may include subsequent decimation
filter(s) and sensor processing logic, e.g., a sound trigger
algorithm. In operation, the firmware block may conserve
energy by being in a power-off or power-saving mode by
default. Responsive to a trigger by the sound energy detec-
tor, the firmware block may wake up, receive data from the
RTL block, and process the data. The sound energy detector
may output the trigger based on characteristics of the
received sample such as signal strength, noise strength, and

type.
25 Claims, 5 Drawing Sheets

- | —————— ——————
| SENSOR ! DATA | DATA STORE ! SENSOR

| |
| SENSOR ol TeRFACE 1ol TR [e{STORE[—H INTERFACE [{ TLIER [l PROCESSING

102 o 1z ! 154 ALGORITHM
| | I 16 | 114 I 152 |
e  —  — = | B - — )|l —eee__ - @

RTL 110 FIRMWARE 150

—
<



US 9,478,231 B1

Sheet 1 of 5

Oct. 25, 2016

U.S. Patent

00F
| "Old

Gl

JHVYMINGI4

961
WHLIHODTY
ONISSIO0Nd
dOSN3S

et
43114

sl

Al_ JOVA4ILNI

| 3H0LS V1vd

I
-

ar
431714

<! JoVREIN [

N
| dOSNS |




US 9,478,231 B1

Sheet 2 of 5

Oct. 25, 2016

U.S. Patent

06 T00 NdO/dSa 072 WH3HdINId JOVATLNI INOHJOHOIW
7z 0%
9%z » 103130 g¢ 9l
WHLIHOD TV - AQY3NT
ONISSID0Yd ANNOS
¥OSN3S A
Q _
177 r———_— ==
| oo 8 yIZ 7I7 _ 9
8 | — <
| qoq7 re JOVAAIN NEIR T ya1714 In (Wad)
" || oIS VLva | INOHJOHOIW
052 300 NdO/dSa 07C Yy3HdINAd
JOV44ILNI INOHJONOIN —
i[i[4
9T SI¥4 Ve 'old
WHLIHOD TV »| 10313a
ONISSIO0Nd ADYINT
HOSN3S aNnos
L}_ _ R
_ 474 A _ 414
[ %MW TI mwmm_ 4 JOVAHIINI |« Y3114 Alln (Wad)
“ | 340LS V1va | INOHJONOIN




U.S. Patent Oct. 25, 2016 Sheet 3 of 5 US 9,478,231 Bl

At RTL Block
RECEIVE AUDIO SAMPLE
302
v
PERFORM FILTERING
304
+ At Firmware Block
STORE FILTERED RECEIVE SAMPLE
SAMPLE TRANSMIT SAMPLE 308 > 329
306
v
PERFORM FILTERING
324
| PERFORM LOW POWER |
|  SOUNDDETECT |
| 326 :
PERFORM A FUNCTION
ASSOCIATED WITH THE
AUDIO SAMPLE
328

FIG. 3
300



U.S. Patent Oct. 25, 2016 Sheet 4 of 5 US 9,478,231 Bl

At RTL Block
RECEIVE AUDIO SAMPLE
402 <
\ 4
PERFORM FILTERING
M
Y
STORE FILTERED
SAMPLE
406
PERFORM SOUND
ENERGY DETECT = |e—
408
Y NO
DETECTED SOUND
ENERGY ABOVE
THRESHOLD?
410
I
YES
At Firmware Block
WAKE PROCESSOR TRANSHIT SAWPLE 45 > RECEIVE SAMPLE
412 432
Y
PERFORM FILTERING
ﬂ
:_PERFO_RM LOW POWER |
| SOUNDDETECT |
| 436 |
PERFORM FUNCTION
ASSOCIATED WITH THE
AUDIO SAMPLE
438

FIG. 4
400



US 9,478,231 B1

Sheet 5 of 5

Oct. 25, 2016

U.S. Patent

D

009
9 9l4
G09
(S)32I1A3a
o/l
—— 700
809
W3LSAS
390144 AUONIN
< T
A sng
< b
209
¥0SSIN0Yd

005
G "old

908
LNdNI 30I0A

\

03
3400 dI

805
d0SS300dd
NOILYOIddV

J

205
JINd




US 9,478,231 Bl

1
MICROPHONE INTERFACE AND IP CORE
FOR ALWAYS-ON SYSTEM

FIELD OF THE DISCLOSURE

The present disclosure relates to a method and system for
audio processing and in one aspect, to voice processing.
More specifically, it relates to a semiconductor intellectual
property core (IP core) including an interface and processing
for a pulse density modulation (PDM) microphone, which
microphone may be “always-listening,” also referred to as
“always-on”.

BACKGROUND

Mobile electronic devices including sensing devices for
use in the Internet of Things (IoT) typically contain sensors
such as microphones. For functionalities such as voice-
triggering, the sensor device is “always-on” to continuously
process incoming data and detect triggers such as a voice
command or other audio stimuli. The always-on nature of
the sensors and accompanied processing is power intensive
and negatively impacts battery life and the consumption of
electricity. One example of a sensor device for always-on
applications is a PDM microphone. A PDM microphone
generates a one-bit oversampled data stream. Thus, process-
ing of a PDM output typically includes decimation, which
reduces a sampling rate of a signal. The decimation may be
implemented by one or more stages and/or filters to generate
an output at a Nyquist sampling rate. There exists a need in
the art to more efficiently manage power consumption of an
“always-on” system such as a voice recognition system with
a PDM microphone.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a simplified block diagram of a system according
to an embodiment.

FIG. 2A is a simplified block diagram of a system
according to an embodiment.

FIG. 2B is a simplified block diagram of a system
according to an embodiment.

FIG. 3 is a flowchart of a method for processing audio
using a partitioned system according to an embodiment.

FIG. 4 is a flowchart of a method for processing audio
using a partitioned system according to an embodiment.

FIG. 5 is a simplified block diagram of a system including
an IP core according to an embodiment.

FIG. 6 is a simplified block diagram of a device according
to an embodiment.

DETAILED DESCRIPTION

Typically “always-on” systems with sensor devices pro-
cess captured signals on firmware running on a digital signal
processor (DSP), a processing unit such as a central pro-
cessing unit (CPU), or the like (“DSP/CPU” for simplicity).
For a PDM microphone, the processing may include deci-
mation, sound detection, and voice command decoding. By
performing all of the processing functions with the firmware
block of the DSP/CPU, the system may suffer from ineffi-
cient power management, high power consumption, ineffi-
cient use of processing resources, and inflexibility. In par-
ticular, high power consumption may result from constant
processing by a decimation filter and implementing a full
decision filtering in firmware; inflexibility may result from
an inefficient interface for the sensor device, e.g., over-
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2

sampled PDM microphone data and an inability to dynami-
cally configure an IP core for a tradeoff between power
and/or millions of cycles per second (MCPS) dissipation and
sound quality.

Methods and systems of the present disclosure provide
hierarchical power management and partitioning of an IP
core to improve the performance of “always-on” systems.
The partitioning of the filtering and processing according to
the methods discussed herein allows for an additional level
of power management in hardware and effects a reduction in
power and physical layout area consumed, compared with
conventional methods for operating a PDM system.

In an embodiment, hierarchical power management may
reduce power consumption. In an embodiment, an IP core
may be partitioned into a register transfer level (RTL) block
and a firmware block. Some functions typically performed
by the firmware may be allocated to the RTL block instead.
The hierarchical power management may be performed at
two levels: first, at the RTL block, and secondly, at the
firmware block. The partitioned architecture may be more
power efficient than other architectures. In an embodiment,
a signal flow may allow for a low power decimation filter to
be implemented as a combination of front-end filter stages in
RTL and back end filter stages in firmware in a DSP. In
another embodiment, the RTL may include a sound energy
detection (SED) module. The RTL portion, including a low
power consuming filter and, optionally the SED, may be
“always-on,” while the firmware portion is generally off.
The RTL portion may alert the firmware portion according
to methods discussed herein. In this manner, the back-end
filters in the firmware portion may provide an illusion of
being always-on without being active until triggered by the
SED of the RTL block. In other words, the DSP may be off
by default, and may wake up in response to an alert by the
RTL block. Such a hierarchical power management methods
and systems may allow for the average system power
consumption to be significantly reduced. In another embodi-
ment, one or more back-end filters may be provided in the
RTL block. The SED may be coupled to one or more
back-end filters.

In an embodiment, the firmware components may be
programmable to provide flexibility. For example, the firm-
ware may have one or more of the following programmable
features: sampling rates, oversampling ratios and sound
quality. For example, the sound quality may be specified at
a precision e.g., 16 bit/24 bit precision at different signal-
to-noise ratios (SNRs), which may provide support for
different types of digital PDM microphones. As another
example, the firmware may be dynamically configurable to
provide a desired MCPS/power vs. sound record quality
tradeoff. The tradeoff may be dynamically configured
according to an application scenario. For instance, the
architecture may allow the firmware to become “context
aware” by using an optional SED. SED parameters may
identify and adapt the system to different scenarios. In an
embodiment, the SED may differentiate between scenarios
such as a noisy public place, night time, babble, etc.

FIG. 1 is a simplified block diagram of a system 100
according to an embodiment. The system may include an
RTL block 110 and a firmware block 150. Each of RTL block
110 and firmware block 150 may be operated according to
the methods described herein. For example, the RTL block
and the firmware block may perform one or more of the
methods shown by way of example in FIG. 3.

The RTL block may include a filter 112 and a data store
114. The filter 112 may be implemented by a decimation
filter, which reduces a sample rate of a signal. The filter may
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be advantageously provided in the RTL block to provide
power savings, as described herein. The filter may run at a
relatively high oversample rate (compared with subsequent
filter(s)). The filter may have a multiplier-less structure. The
filter may provide relatively high decimation, which pro-
duces output at a relatively lower sample rate to simplify or
facilitate subsequent processing by the firmware block 150.
In an embodiment, the filter 112 may include a cascaded-
integrator comb (CIC) filter. In an embodiment, the filter 112
includes a filter with multiple stages. In another embodi-
ment, the filter 112 includes at least one filter. The filter 112
may include at least one decimation stage. The decimation
stage(s) may be implemented by any combination of finite
impulse response (FIR) and half-band filters, or any other
combination of filters as understood by one of ordinary skill
in the art. The filter 112 may output at least one sample, also
referred to as a “frame.”

The data store 114 may store frames output by the filter
112. In an embodiment, the data store may save frames for
later distribution to the firmware block 150. In another
embodiment, the data store may pass frames immediately to
the firmware block 150. By way of non-limiting example,
the data store 114 may be implemented by or include a
storage apparatus for storing data such as in a first-in-first-
out (FIFO) manner. The data store 114 may process, store,
and output data in a format compatible with the firmware
block 150. For example, if the filter 112 is implemented by
a CIC decimator or variant and the firmware block receives
blocks of sample data in a pre-definable format, then the data
store may receive the CIC filter output, which output may be
generated uniformly over time. The data store may then
output data to the firmware block 150 in bursts as desired by
the firmware block 150. Alternatively, the data store may be
implemented by any storage apparatus understood by one of
ordinary skill in the art.

The firmware block 150 may include a filter 154 and a
sensor processing algorithm 156. The filter 154 may process
received data including decimation, volume control, and/or
offset removal. In an embodiment, the filter 154 includes a
filter with multiple stages. In another embodiment, the filter
154 includes at least one filter. The filter 154 may include at
least one decimation stage. The decimation stage(s) may be
implemented by any combination of finite impulse response
(FIR) and half-band filters, or any other combination of
filters as understood by one of ordinary skill in the art.

The sensor processing algorithm 156 may include a
detection algorithm and/or a trigger algorithm. For example,
the sensor processing algorithm may include voice detection
and/or voice trigger functions. The sensor processing algo-
rithm may analyze an audio sample (also referred to as a
“sound sample”) to determine corresponding functions. For
example, an audio sample may trigger a function.

In an embodiment, the firmware block 150 may include a
data store interface 152. The data store interface may be
compatible with the data store 114. The data store interface
may process a queue or other storage apparatus to condition
an input to the filter 154. The data store interface may be
customizable. The data store interface may be instantiated
for multiprocessor communication. For example, the firm-
ware block 150 may be configured to receive data in chunks,
while the filter 112 outputs data as a steady stream. The data
store 114 may store the output of the filter 112, then output
the data to the data store interface 152. The data store
interface 152 may then output the data in chunks recogniz-
able by the filter 154.

In an embodiment, the RTL block 110 may include a
sensor interface 116. The sensor interface may be compat-
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ible with the sensor 102. The sensor interface may include
logic for receiving output for the sensor and outputting the
sensor data to the filter 112.

In operation, the filter 112 may receive a sample from
sensor 102. Using the example of a sound sample output by
a PDM microphone, the input to the filter 112 may be an
oversampled one-bit data stream. In an embodiment, the
sample rate may be progressively reduced by the filter 112
and the filter 154. For example, the filter 112 may be a first
stage decimator that reduces the sample rate of the data
stream by several orders. By way of non-limiting example,
the filter 112 may reduce the sample rate by around 8 times
to around 32 times. The first stage decimator may be
implemented by a CIC decimator or variant. The filter 112
may remove noise from the data stream and further condi-
tion the data stream for subsequent processing by the
firmware block 150. The output of the filter 112 may be
stored in data store 114. The data store 114 may interface
with data store interface 152.

The data stream may be passed from the RTL block 110
to the firmware block 150 via the data store 114 and data
store interface 152. For example, the firmware block 150
may be configured to receive data in chunks (or bursts),
while the filter 112 outputs data as a steady stream. The data
store 114 may store the output of the filter 112. When desired
by the firmware block 150, the data store 114 may output the
data to the data store interface 152. The data store interface
152 may then output bursts of data to the filter 154. The filter
154 may include one or more decimation stages to further
reduce a sample rate of the data stream. In an embodiment,
the filter 154 may reduce the sampling rate by around two
times to around eight times. The output of the filter 154 may
be a data stream at a sampling rate suitable for the sensor
processing algorithm 156, e.g., a Nyquist sampling rate. The
sensor processing algorithm may then operate on the data
stream to perform processing functions. For example, the
sensor processing algorithm may detect an audio stimulus
such as a voice command. As another example, the sensor
processing algorithm may determine information about an
environment in which the audio stream is generated.

FIG. 2A is a simplified block diagram of a system 200
according to an embodiment. The system may include a
microphone interface peripheral 210 and a DSP/CPU core
250. Each of the microphone interface peripheral 210 and
the DSP/CPU core 250 may be operated according to the
methods described herein. For example, the microphone
interface peripheral 210 and the DSP/CPU core 250 may
perform one or more of the methods shown by way of
example in FIG. 4. The microphone interface peripheral 210
may be implemented in an RTL block. The DSP/CPU core
250 may implement firmware, run firmware, or include
firmware.

The microphone interface peripheral 210 may include a
filter 212, a data store 214, and sound energy detection
(SED) logic 216. The filter 212 may be implemented by a
decimation filter, which reduces a sample rate of a signal.
The filter may be advantageously provided in the micro-
phone interface peripheral to provide power savings, as
described herein. The filter may run at a relatively high
oversample rate (compared with subsequent filter(s)). The
filter may have a multiplier-less structure. The filter may
provide relatively high decimation, which produces output
at a relatively lower sample rate to simplify or facilitate
subsequent processing by the DSP/CPU core 250. In an
embodiment, the filter 212 may include a cascaded-integra-
tor comb (CIC) filter. The filter 212 may output at least one
sample, also referred to as a “frame.”
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The data store 214 may store frames output by the filter
212. In an embodiment, the data store 214 may save frames
for later distribution to the DSP/CPU core 250. In another
embodiment, the data store 214 may pass frames immedi-
ately to the DSP/CPU core 250. By way of non-limiting
example, the data store 214 may be implemented by or
include a storage apparatus for storing data such as in a
first-in-first-out (FIFO) manner. The data store 214 may
process, store, and output data in a format compatible with
the DSP/CPU core 250. For example, if the filter 212 is
implemented by a CIC decimator or variant and the DSP/
CPU core receives blocks of sample data in a pre-definable
format, then the data store may receive the CIC filter output,
which output may be generated uniformly over time. The
data store may then output data to the DSP/CPU core 250 in
bursts as desired by the DSP/CPU core 250.

In an embodiment, where the data store 214 is a queue
such as a FIFO, the FIFO depth may be selected such that
when the DSP/CPU core 250 wakes up, the queue contains
at least one frame of data before a triggering frame, i.e., a
frame that triggers a sound detect function, as further
described herein. For example, if an audio sample has a
frame length of 256, the depth of the FIFO may be 1024 such
that three frames and a detected triggering frame would be
retained in the queue. Alternatively, the data store 214 may
be implemented by any storage apparatus understood by one
of ordinary skill in the art.

The SED 216 may be communicatively coupled to an
output of the filter 212 and the DSP/CPU core 250. In
embodiments, the SED may estimate signal strength of a
signal, estimate an amount of noise in a frame, detect a type
of frame, and/or output an interrupt signal to wake up the
DSP/CPU core 250.

The SED 216 may operate on a configurable number of
frame output(s) by the filter 212 to estimate a received signal
strength (RSSI). In an embodiment, sound energy is deter-
mined based a time domain analysis. The time domain
analysis may include determining an energy of a sample by
summing values for each frame, e.g., in the form of sum of
squares, sum of absolutes, etc. In another embodiment,
sound energy is determined based on a frequency domain
analysis. The frequency domain analysis may include tuning
to a specified frequency and detecting sound activity at that
frequency. The SED may output the RSSI to the DSP/CPU
core 250. Other signal strength estimation techniques under-
stood by one of ordinary skill in the art may also be used.

The SED 216 may operate on a configurable number of
frame output(s) by the filter 212 to estimate a noise strength
(“Enoise”) in the frame. Enoise may provide information
regarding an environment in which the PDM microphone
202 is situated, e.g., in a crowd, in nature, on a street, etc.
This allows the PDM microphone to be used as a monitor.
In other words, the described apparatus and techniques
might apply in “context aware” applications. The SED may
output Enoise to the DSP/CPU core 250.

The SED 216 may determine a type of frame, e.g.,
whether the frame is a sound frame or a noise frame. A sound
frame may include sounds directed to the PDM microphone.
A noise frame may include ambient noise or background
sound. In an embodiment, the SED may determine a frame
type based on a comparison of a characteristic of the frame
and a threshold value. The threshold may be configured by
the DSP/CPU core 250. For instance, a characteristic
exceeding a threshold may indicate that a frame is a signal
frame such as a sound frame. A characteristic may indicate
that the sound is more likely than not a voice sample. As
another example, a characteristic being below a threshold
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may indicate that a frame is a noise frame. A characteristic
may indicate a likelihood of the sound being part of back-
ground noise. Additionally, signal strength estimation may
be performed according to methods and techniques under-
stood by one of ordinary skill in the art.

The SED may transmit an interrupt signal to the DSP/
CPU core 250 in response to detected sound energy. In an
embodiment, the RSSI may be a basis for outputting the
interrupt signal. For example, the interrupt signal may be
output if sound energy is detected. As another example, the
interrupt signal may be output if a filtered sound sample is
above a threshold value. The threshold value may be
dynamically updated. For example, the type of sound may
be identified and the threshold may be adjusted accordingly.

The DSP/CPU core 250 may be an IP core including any
combination of DSPs, CPUs, and logic to implement the
methods discussed herein. The DSP/CPU core 250 may
include a data store interface 252, a filter 254 and a sensor
processing algorithm 256.

The data store interface 252 may be compatible with the
data store 214. The interface may process a queue or other
storage apparatus to condition an input to the filter 254. The
data store interface may be customizable. The data store
interface may be instantiated for multiprocessor communi-
cation. For example, the DSP/CPU core 250 may be con-
figured to receive data in chunks, while the filter 212 outputs
data as a steady stream. The data store 214 may store the
output of the filter 212, then output the data to the data store
interface 252. The data store interface 252 may then output
the data in chunks recognizable by the filter 254.

The filter 254 may process received data including deci-
mation, volume control, and/or offset removal. In an
embodiment, the filter 254 includes a filter with multiple
stages. In another embodiment, the filter 254 includes at
least one filter. The filter 254 may include at least one
decimation stage. The decimation stage(s) may be imple-
mented by any combination of finite impulse response (FIR)
and half-band filters, or any other combination of filters as
understood by one of ordinary skill in the art.

The sensor processing algorithm 256 may include a
detection algorithm and/or a trigger algorithm. For example,
the sensor processing algorithm may include voice detection
and/or voice trigger functions. The sensor processing algo-
rithm may analyze an audio sample to determine corre-
sponding functions. For example, an audio sample may
trigger a function.

In an embodiment, the microphone interface peripheral
210 may include a sensor interface (not shown). The sensor
interface may be compatible with the microphone 202. The
sensor interface may include logic for receiving output for
the sensor and outputting the sensor data to the filter 212.

In an embodiment, the DSP/CPU core 250 may include a
low-power sound detecting device (LPSD) 258 communi-
catively coupled to an output of the filter 254 and an input
of the sensor processing algorithm 256. The LPSD may
process the output of the filter 254 to identify sound activity
prior to outputting data to the sensor processing algorithm
256. For example, the LPSD may analyze a received sound
sample to determine whether the sound sample represents an
activity of interest. As another example, the LPSD may
analyze the received sound sample to determine whether the
type of sound sample, e.g., nature sound, voice, street noise,
etc.

The DSP/CPU core 250 may include at least one general
purpose input and/or output (GPIO) port (not shown). The
GPIO port(s) may generate a control signal understood by
the PDM microphone interface peripheral 210 and SED. The
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GPIO port(s) may receive SED parameters such as RSSI and
Enoise. The architecture described herein enables the DSP/
CPU core 250 to use the RSSI and Enoise along with other
information such as CIC data, to estimate an SED detection
threshold. The parameter may also be used to sense a
context, environment, and/or ambience in which the appa-
ratus is used. The sensed context, environment, and/or
ambience may be used, e.g., by the DSP/CPU core 250 to set
a MCPS vs. audio quality tradeoff.

In operation, the DSP/CPU core 250 may remain in power
down mode until alerted by the microphone interface periph-
eral 210. In an embodiment, the DSP/CPU core 250 may
have a firmware-operated power down mode. The DSP/CPU
core 250 may remain in a power down mode until alerted by
the SED 216.

The SED module in the RTL block allows for the DSP/
CPU core 250 to be in a low power mode so that it does not
need to process all of the filter data. If the SED 216
determines that the sound sample exceeds a threshold value,
the DSP/CPU 250 may then “wake up.” For example, the
DSP/CPU core 250 may be awakened by the SED module,
e.g., via an interrupt signal, if sound energy is detected. After
waking up, the DSP/CPU core 250 may access data from
FIFO. This allows a user to have full flexibility in firmware
to design SED interrupt handling and DSP/CPU power
down state machine design and dynamic tuning. For
example, data stored in the data store 214 may then be
forwarded for processing by the data store interface 252,
additional filtering by filter 254, and analysis by sensor
processing algorithm 256. The methods discussed herein are
also compatible with other types of power-down modes,
e.g., a lower-power state, a mode that retains a state may
bring further reduction in average power consumed, etc. In
an embodiment, prior to sensor processing, the data may be
analyzed by a LPSD 258.

In operation, the filter 212 may receive a sample from
PDM microphone 202, e.g., an oversampled one-bit data
stream. In an embodiment, the sample rate may be progres-
sively reduced by the filter 212 and the filter 254. For
example, the filter 212 may be a first stage decimator that
reduces the sample rate of the data stream by several orders.
By way of non-limiting example, the filter 212 may reduce
the sample rate by around 8 times to around 32 times. The
first stage decimator may be implemented by a CIC deci-
mator or variant. The filter 212 may remove noise from the
data stream and further condition the data stream for sub-
sequent processing by the DSP/CPU core 250. The output of
the filter 212 may be stored in data store 214. The output of
the filter may be provided to the sound energy detector 216.

Based on the signal output by the filter 212, the SED may
estimate, for the signal or a portion thereof, a level of
strength and a level of noise. The SED may determine a type
of one or more constituent frames of the signal. The SED
may make its determination based on a threshold provided
by the DSP/CPU core 250. The SED may output the signal
strength, noise, and/or type of the signal. The SED may
output an interrupt signal to wake up the DSP/CPU core 250,
as described herein. The interrupt signal may cause the
DSP/CPU core 250 to wake up, as described herein. The
DSP/CPU core 250 may remain awake for a pre-determined
amount of time.

If the DSP/CPU core 250 is awake, a data stream may be
passed from the microphone interface peripheral 210 to the
DSP/CPU block 250 via the data store 214 and the data store
interface 252. For example, the DSP/CPU core 250 may be
configured to receive data in chunks (or bursts), while the
filter 212 may output data as a steady stream. The data store
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214 may store the output of the filter 212. When desired by
the DSP/CPU core 250, the data store 214 may output the
data to the data store interface 252. The data store interface
252 may then output bursts of data to the filter 254. Using
a FIFO queue as an example, the data store 214 may be
configured as follows. The FIFO depth may be selected such
that when the DSP/CPU core 250 wakes up, the queue
contains at least one frame of data before a triggering frame,
i.e., a frame that causes the interrupt signal to be output. For
example, if an audio sample has a frame length of 256, the
depth of the FIFO may be 1024 such that three frames and
a detected triggering frame is retained in the queue.

The filter 254 may include one or more decimation stages
to further reduce a sample rate of the data stream. By way
of non-limiting example, the filter 254 may reduce the
sampling rate by around two times to around eight times.
The output of the filter 254 may be a data stream at a
sampling rate suitable for the sensor processing algorithm
256, e.g., a Nyquist sampling rate. The sensor processing
algorithm may then operate on the data stream to perform
processing functions. For example, the sensor processing
algorithm may detect an audio stimulus such as a voice
command. As another example, the sensor processing algo-
rithm may determine information about an environment in
which the audio stream is generated.

FIG. 2B is a simplified block diagram of a system 260
according to an embodiment. The system may include a
microphone interface peripheral 270 and a DSP/CPU core
290. Each of the microphone interface peripheral 270 and
the DSP/CPU core 290 may be operated according to the
methods described herein. For example, the microphone
interface peripheral 270 and the DSP/CPU core 290 may
perform one or more of the methods shown by way of
example in FIG. 4. The microphone interface peripheral 270
may be implemented in an RTL block. The DSP/CPU core
290 may implement firmware, run firmware, or include
firmware.

The microphone interface peripheral 270 may include a
filter 272, a filter 274, a data store 284, and an SED 276. The
filter 272 and/or 274 may be implemented by a decimation
filter, which reduces a sample rate of a signal. The filter 272
and/or 274 may be advantageously provided in the micro-
phone interface peripheral to provide power savings, as
described herein. The filter 272 and/or 274 may run at a
relatively high oversample rate (compared with subsequent
filter(s)). The filter 272 and/or 274 may have a multiplier-
less structure. The filter 272 and/or 274 may provide rela-
tively high decimation, which produces output at a relatively
lower sample rate to simplify or facilitate subsequent pro-
cessing by the DSP/CPU core 290. In an embodiment, the
filter 272 and/or 274 may include a CIC filter or variant. The
filter 272 and/or 274 may process received data including
decimation, volume control, and/or offset removal. In an
embodiment, the filter 272 and/or 274 includes a filter with
multiple stages. In another embodiment, the filter 272 and/or
274 includes at least one filter. The filter 272 and/or 274 may
include at least one decimation stage. The decimation
stage(s) may be implemented by any combination of finite
impulse response (FIR) and half-band filters, or any other
combination of filters as understood by one of ordinary skill
in the art. The filter may output at least one sample, also
referred to as a “frame.”

The data store 284 may store frames output by the filter
274. In an embodiment, the data store 284 may save frames
for later distribution to the DSP/CPU core 290. In another
embodiment, the data store 284 may pass frames immedi-
ately to the DSP/CPU core 290. By way of non-limiting
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example, the data store 284 may be implemented by or
include a storage apparatus for storing data such as in a
first-in-first-out (FIFO) manner. The data store 284 may
process, store, and output data in a format compatible with
the DSP/CPU core 290. For example, if the filter 272 and/or
274 is implemented by a CIC decimator or variant and the
DSP/CPU core receives blocks of sample data in a pre-
definable format, then the data store may receive the CIC
filter output, which output may be generated uniformly over
time. The data store may then output data to the DSP/CPU
core 290 in bursts as desired by the DSP/CPU core 290.

In an embodiment, where the data store 284 is a queue
such as a FIFO, the FIFO depth may be selected such that
when the DSP/CPU core 290 wakes up, the queue contains
at least one frame of data before a triggering frame, i.e., a
frame that triggers a sound detect function, as further
described herein. For example, if an audio sample has a
frame length of 256, the depth of the FIFO may be 1024 such
that three frames and a detected triggering frame would be
retained in the queue. Alternatively, the data store 284 may
be implemented by any storage apparatus understood by one
of ordinary skill in the art.

In an embodiment, the SED 276 may be communicatively
coupled to an output of the filter 274 and the DSP/CPU core
250. In an alternative embodiment, the SED 276 may be
communicatively coupled to an output of filter 272 and the
DSP/CPU core 290. In yet another embodiment, the SED
276 may be communicatively coupled to the filter 272 and
the filter 274 and may select between the filter 272 and 274.
For example, the selection of filter 272 or 274 may depend
on power consumption, processing power, etc. The output of
the filter 274 may be provide a cleaner signal to the SED
276.

In embodiments, the SED may estimate signal strength of
a signal, estimate an amount of noise in a frame, detect a
type of frame, and/or output an interrupt signal to wake up
the DSP/CPU core 290. The SED 276 may operate on a
configurable number of frame output(s) by the filter 272
and/or 274 to estimate a received signal strength (RSSI). In
an embodiment, sound energy is determined based a time
domain analysis. The time domain analysis may include
determining an energy of a sample by summing values for
each frame, e.g., in the form of sum of squares, sum of
absolutes, etc. In another embodiment, sound energy is
determined based on a frequency domain analysis. The
frequency domain analysis may include tuning to a specified
frequency and detecting sound activity at that frequency.
The SED may output the RSSI to the DSP/CPU core 290.
Other signal strength estimation techniques understood by
one of ordinary skill in the art may also be used.

The SED 276 may operate on a configurable number of
frame output(s) by the filter 272 and/or 274 to estimate a
noise strength (“Enoise”) in the frame. Enoise may provide
information regarding an environment in which the PDM
microphone 262 is situated, e.g., in a crowd, in nature, on a
street, etc. This allows the PDM microphone to be used as
a monitor. In other words, the described apparatus and
techniques might apply in “context aware” applications. The
SED may output Enoise to the DSP/CPU core 290.

The SED 276 may determine a type of frame, e.g.,
whether the frame is a sound frame or a noise frame. A sound
frame may include sounds directed to the PDM microphone.
A noise frame may include ambient noise or background
sound. In an embodiment, the SED may determine a frame
type based on a comparison of a characteristic of the frame
and a threshold value. The threshold may be configured by
the DSP/CPU core 290. For instance, a characteristic
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exceeding a threshold may indicate that a frame is a signal
frame such as a sound frame. A characteristic may indicate
that the sound is more likely than not a voice sample. As
another example, a characteristic being below a threshold
may indicate that a frame is a noise frame. A characteristic
may indicate a likelihood of the sound being part of back-
ground noise. Additionally, signal strength estimation may
be performed according to methods and techniques under-
stood by one of ordinary skill in the art.

The SED may transmit an interrupt signal to the DSP/
CPU core 290 in response to detected sound energy. In an
embodiment, the RSSI may be a basis for outputting the
interrupt signal. For example, the interrupt signal may be
output if sound energy is detected. As another example, the
interrupt signal may be output if a filtered sound sample is
above a threshold value. The threshold value may be
dynamically updated. For example, the type of sound may
be identified and the threshold may be adjusted accordingly.

The DSP/CPU core 290 may be an IP core including any
combination of DSPs, CPUs, and logic to implement the
methods discussed herein. The DSP/CPU core 290 may
include a data store interface 282 and a sensor processing
algorithm 286.

The data store interface 282 may be compatible with the
data store 284. The interface may process a queue or other
storage apparatus to condition an input to the sensor pro-
cessing algorithm 286. The data store interface may be
customizable. The data store interface may be instantiated
for multiprocessor communication. For example, the DSP/
CPU core 290 may be configured to receive data in chunks,
while the filter 274 outputs data as a steady stream. The data
store 284 may store the output of the filter 274, then output
the data to the data store interface 282. The data store
interface 282 may then output the data in chunks recogniz-
able by the sensor processing algorithm 286.

The sensor processing algorithm 286 may include a
detection algorithm and/or a trigger algorithm. For example,
the sensor processing algorithm may include voice detection
and/or voice trigger functions. The sensor processing algo-
rithm may analyze an audio sample to determine corre-
sponding functions. For example, an audio sample may
trigger a function.

In an embodiment, the microphone interface peripheral
210 may include as sensor interface (not shown). The sensor
interface may be compatible with the sensor microphone
202. The sensor interface may include logic for receiving
output for the sensor and outputting the sensor data to the
filter 272.

In an embodiment, the DSP/CPU core 290 may include a
low-power sound detecting device (LPSD) 288 communi-
catively coupled to an output of the data store interface 282
and an input of the sensor processing algorithm 286. The
LPSD may process the output of the data store interface 282
to identify sound activity prior to outputting data to the
sensor processing algorithm 286. For example, the LPSD
may analyze a received sound sample to determine whether
the sound sample represents an activity of interest. As
another example, the LPSD may analyze the received sound
sample to determine whether the type of sound sample, e.g.,
nature sound, voice, street noise, etc.

The DSP/CPU core 290 may include at least one general
purpose input and/or output (GPIO) port (not shown). The
GPIO port(s) may generate a control signal understood by
the PDM microphone interface peripheral 270 and SED. The
GPIO port(s) may receive SED parameters such as RSSI and
Enoise. The architecture described herein enables the DSP/
CPU core 290 to use the RSSI and Enoise along with other
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information such as CIC data, to estimate an SED detection
threshold. The parameter may also be used to sense a
context, environment, and/or ambience in which the appa-
ratus is used. The sensed context, environment, and/or
ambience may be used, e.g., by the DSP/CPU core 290 to set
a MCPS vs. audio quality tradeoff.

In operation, the DSP/CPU core 290 may remain in power
down mode until alerted by the microphone interface periph-
eral 270. In an embodiment, the DSP/CPU core 290 may
have a firmware-operated power down mode. The DSP/CPU
core 290 may remain in a power down mode until alerted by
the SED 276.

The SED module in the RTL block allows for the DSP/
CPU core 290 to be in a low power mode so that it does not
need to process all of the filter data. If the SED 276
determines that the sound sample exceeds a threshold value,
the DSP/CPU 290 may then “wake up.” For example, the
DSP/CPU core 290 may be awakened by the SED module,
e.g., via an interrupt signal, if sound energy is detected. After
waking up, the DSP/CPU core 290 may access data from
FIFO. This allows a user to have full flexibility in firmware
to design SED interrupt handling and DSP/CPU power
down state machine design and dynamic tuning. For
example, data stored in the data store 284 may then be
forwarded for processing by the data store interface 282 and
analysis by sensor processing algorithm 286. The methods
discussed herein are also compatible with other types of
power-down modes, e.g., a low-power state, a mode that
retains a state may bring further reduction in average power
consumed, etc. In an embodiment, prior to sensor process-
ing, the data may be analyzed by a LPSD 288.

In operation, the filter 272 may receive a sample from
PDM microphone 262, e.g., an oversampled one-bit data
stream. In an embodiment, the sample rate may be progres-
sively reduced by the filter 272 and the filter 274. For
example, the filter 272 may be a first stage decimator that
reduces the sample rate of the data stream by several orders.
By way of non-limiting example, the filter 272 may reduce
the sample rate by around 8 times to around 32 times. The
first stage decimator may be implemented by a CIC deci-
mator or variant. The filter 272 may remove noise from the
data stream and further condition the data stream for sub-
sequent processing. In an embodiment, the output of the
filter 272 may be provided to the filter 274.

The filter 274 may include one or more decimation stages
to reduce a sample rate of the data stream. By way of
non-limiting example, the filter 274 may reduce the sam-
pling rate by around two times to around eight times. The
output of the filter 274 may be a data stream at a sampling
rate suitable for the sensor processing algorithm 286, e.g., a
Nyquist sampling rate. The output of the filter 274 may be
passed to the SED 276. The output of the filter 274 may be
stored in data store 284.

In an embodiment, the SED operates on an output of filter
274. In an alternative embodiment, the SED may instead
operate on an output of the filter 272. In another embodi-
ment, the SED 276 may select between the outputs of filter
272 and 274. For example, the selection of filter 272 or 274
may depend on power consumption, processing power, etc.
The output of the filter 274 may be provide a cleaner signal
to the SED 276.

Based on the received signal, the SED may estimate, for
the signal or a portion thereof, a level of strength and a level
of noise. The SED may determine a type of one or more
constituent frames of the signal. The SED may make its
determination based on a threshold provided by the DSP/
CPU core 290. The SED may output the signal strength,

25

35

40

45

12

noise, and/or type of the signal. The SED may output an
interrupt signal to wake up the DSP/CPU core 290, as
described herein. The interrupt signal may cause the DSP/
CPU core 290 to wake up, as described herein. The DSP/
CPU core 290 may remain awake for a pre-determined
amount of time.

If the DSP/CPU core 290 is awake, a data stream may be
passed from the microphone interface peripheral 270 to the
DSP/CPU block 290 via the data store 284 and the data store
interface 282. For example, the DSP/CPU core 290 may be
configured to receive data in chunks (or bursts), while the
filter 274 may output data as a steady stream. The data store
284 may store the output of the filter 274. When desired by
the DSP/CPU core 290, the data store 284 may output the
data to the data store interface 282. The data store interface
282 may then output bursts of data to the sensor processing
algorithm 286. Using a FIFO queue as an example, the data
store 284 may be configured as follows. The FIFO depth
may be selected such that when the DSP/CPU core 290
wakes up, the queue contains at least one frame of data
before a triggering frame, i.e., a frame that causes the
interrupt signal to be output. For example, if an audio sample
has a frame length of 256, the depth of the FIFO may be
1024 such that three frames and a detected triggering frame
is retained in the queue.

The sensor processing algorithm 286 may operate on the
data stream to perform processing functions. For example,
the sensor processing algorithm may detect an audio stimu-
Ius such as a voice command. As another example, the
sensor processing algorithm may determine information
about an environment in which the audio stream is gener-
ated. The filter 254 may include one or more decimation
stages to further reduce a sample rate of the data stream. By
way of non-limiting example, the filter 274 may reduce the
sampling rate by around two times to around eight times.
The output of the filter 274 may be a data stream at a
sampling rate suitable for the sensor processing algorithm
286, e.g., a Nyquist sampling rate. The sensor processing
algorithm may then operate on the data stream to perform
processing functions. For example, the sensor processing
algorithm may detect an audio stimulus such as a voice
command. As another example, the sensor processing algo-
rithm may determine information about an environment in
which the audio stream is generated.

Systems 100, 200, and 260 are examples of partitioning of
filters and processing between an RTL block and a firmware
block. Each of the RTL blocks and firmware blocks may be
customizable. In an embodiment, the components described
may be partitioned between the RTL block and the software
block in other ways. For example, some or all of the
components may be provided in the RTL block. As another
example, some or all of the components may be provided in
the firmware block.

FIG. 3 is a flowchart of a method 300 for processing audio
using a partitioned system. In an embodiment, 302-306 may
be performed by an RTL block such as RTT block 110 shown
in FIG. 1, and 322-328 may be performed by a processor
block such as processor block 150 shown in FIG. 1.

At 302, the method 300 may receive an audio sample at
an RTL block. For example, the audio sample may be a
signal output by a PDM microphone, i.e., an oversampled
one-bit data stream. At 304, the method may filter the
received audio sample. In an embodiment, the filtering may
reduce a sampling rate of the audio sample. For example, the
filtering may be a decimation process that reduces the
sample rate of the data stream. The filtering in 304 may
include removing noise from the data stream and further
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conditioning the data stream. At 306, the method 300 may
store the filtered samples. For example, the method 300 may
store the filtered samples in a particular order, e.g., FIFO. A
pre-defined number of samples may be stored at 306. The
number of samples stored may correspond to a length of the
audio sample. In an embodiment, a most recent pre-defined
number of samples may be stored. For example, older
samples may be overwritten by more recently-received
samples.

At 308, the method 300 may transmit the filtered samples
from an RTL block to a firmware block. The transmission
may alter a rate or data chunk size of the filtered samples.
For example, samples may be transmitted in bursts of a
pre-definable size. The samples may then be received by a
firmware block (322). The method 300 may filter the
received samples (324). For example, the filtering may
include one or more decimation stages to further reduce a
sample rate of the data stream. The result of the filtering in
324 may be a data stream at a Nyquist sampling rate. The
method 300 may then operate on the filtered stream to
perform audio processing functions (328). For example, the
method 300 may detect an audio stimulus such as a voice
command. The method 300 may determine whether the
audio stimulus is a trigger for a function. If a voice command
is detected, the method 300 may further parse the voice
command and perform a corresponding function. As another
example, the sensor processing algorithm may determine
information about an environment in which the audio stream
is generated.

The method 300 may optionally perform low power
sound detection (LPSD) (326) subsequent to filtering (324)
and prior to performing a function associated with an audio
sample (328). The LPSD may include processing a sample
to identify sound activity. For example, the LPSD may
analyze a received sound sample to determine whether the
sound sample represents an activity of interest. As another
example, the LPSD may analyze the received sound sample
to determine whether the type of sound sample, e.g., nature
sound, voice, street noise, etc.

FIG. 4 is a flowchart of a method 400 for processing audio
using a partitioned system. In an embodiment, 402-412 may
be performed by an RTL block such that the microphone
interface peripheral 210 shown in FIG. 2A or the micro-
phone interface peripheral 270 shown in FIG. 2B, and
432-438 may be performed by a processor block such the
DSP/CPU core 250 shown in FIG. 2A or the DSP/CPU core
290 shown in FIG. 2B.

At 402, the method 400 may receive an audio sample at
an RTL block. For example, the audio sample may be a
signal output by a PDM microphone, e.g., an oversampled
one-bit data stream. At 404, the method may filter the
received audio sample. In an embodiment, the filtering may
reduce a sampling rate of the audio sample. For example, the
filtering may be a decimation process that reduces the
sample rate of the data stream. The filtering in 404 may
include removing noise from the data stream and further
conditioning the data stream.

At 406, the method 400 may store the filtered samples.
For example, the method 400 may store the filtered samples
in a particular order, e.g., FIFO. In an embodiment, the
method 400 may continue to receive audio samples while
performing other steps. For example, the method 400 may
return to 402 to receive another audio sample upon storage
of the filtered sample in 406. A pre-defined number of
samples may be stored at 406. The number of samples stored
may correspond to a length of the audio sample. In an
embodiment, a most recent pre-defined number of samples
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may be stored. For example, older samples may be over-
written by more recently-received samples.

At 408, the method 400 may perform sound energy
detection (SED). The detection of sound energy may include
estimating signal strength, estimating noise strength in a
frame, detecting a type of frame, and outputting an interrupt
signal to wake a processor, as described herein.

At 410, the method 400 may determine whether the SED
indicates that a characteristic of the frame is above a
threshold. If the characteristic does not exceed the threshold,
the method 400 may return to 408 to receive another audio
sample. If the characteristic is above the threshold, the
method 400 may wake the processor (412). For example, the
method 400 may transmit an interrupt signal to the proces-
sor, as described herein.

At 416, the method 400 may transmit the filtered samples
from an RTL block to a firmware block. The transmission
may alter a rate or data chunk size of the filtered samples.
For example, samples may be transmitted in bursts of a
pre-definable size. The samples may then be received by a
firmware block (432). At 434, the method 400 may filter the
received samples. For example, the filtering may include one
or more decimation stages to further reduce a sample rate of
the data stream. The result of the filtering in 434 may be a
data stream at a Nyquist sampling rate. The method 400 may
then operate on the filtered stream to perform audio pro-
cessing functions (438). For example, the method 400 may
detect an audio stimulus such as a voice command. The
method 400 may determine whether the audio stimulus is a
trigger for a function. If a voice command is detected, the
method 400 may further parse the voice command and
perform a corresponding function. As another example, the
sensor processing algorithm may determine information
about an environment in which the audio stream is gener-
ated.

In an embodiment, the method may perform low power
sound detection (LPSD) 436 after filtering 434 and before
audio processing 438. The LPSD may include processing a
filtered audio sample to identify sound activity. For example,
the LPSD may analyze a received audio sample to determine
whether the audio sample represents an activity of interest.
As another example, the LPSD may analyze the received
sound sample to determine whether the type of sound
sample, e.g., nature sound, voice, street noise, etc.

One of ordinary skill in the art would appreciate that error
correction and fault tolerance techniques may be applied to
the methods described herein. For example, after waking,
the DSP/CPU core may return to a power down mode based
on inactivity. A pre-definable threshold time range may be
maintained and monitored by a timer. If no triggers are
received during the threshold time range, the DSP/CPU core
may return to the power down mode. Otherwise, the wake
time may be extended. A threshold sound energy for trig-
gering the DSP/CPU core may also be set to minimize the
instances in which the DSP/CPU core is awakened by a false
alarm.

In one aspect, the apparatus and techniques described
herein can be used to permit response only to certain types
of sounds, or viewed another way, to prevent response to
certain types of sounds. For example, a distinguishable
audio pattern, such as speech, music, or specific artificially
generated noises (e.g. a vehicle horn, a whistle, or a bell,
among other audio stimuli) may trigger a response, whereas
less distinguishable audio patterns, such as crowd noise,
street noise, or “white” noise, may not trigger a response. In
this sense, the described apparatus and techniques might
apply in “context aware” applications. For instance, the
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power-down mode and/or threshold for awaking the firm-
ware block may be context-aware. The system may be
configured to enter a power-down mode based on charac-
teristics of the environment.

The systems and methods described herein have several
advantages over existing systems and methods. With respect
to power consumption, the systems and methods described
herein may reduce average power consumption, reduce
decimation power consumption, and may use a relatively
small amount of additional silicon area to realize power
savings. That is, the embodiments described herein have low
power consumption and low silicon area and high perfor-
mance.

In embodiments without an SED, the power savings may
be substantial compared with typical applications. For
instance, systems designed for only firmware voice detec-
tion, i.e., without an RTL block, or systems designed for
PDM to pulse code modulation (PCM) conversion may
realize power savings compared with typical methods.

Further power savings are possible in embodiments
including an SED. In one aspect, the modules in the RTL
block that are “always-on” such as a CIC filter and SED
consume relatively little power. The RTL block architecture
and methods of operation described herein also provide
power savings by allowing the DSP/CPU core to remain in
power down mode for a relatively substantial percentage of
time.

In yet another aspect, hierarchical power management
may be enabled by providing the SED in the RTL block. For
example, by providing the SED in the RTL block, there is
provided a first level of data gating of the PDM data to the
DSP/CPU core. In an embodiment, the data may be further
gated by performing voice detection in firmware before
passing the data to a voice trigger algorithm. This may
further reduce average power consumption. In another
aspect, the partitioning of decimation filter(s) between the
RTL and firmware block may reduce decimation power.

In a further aspect, only a small amount of additional
silicon area may be used for the PDM interface peripheral
and SED. One of ordinary skill in the art would appreciate
that the silicon area consumed for the PDM peripheral and
SED may be further reduced over time due to reduction in
size of transistors and other developments in the art.

With respect to system complexity, the systems and
methods described herein may be simplified compared with
typical systems and methods. For example, unlike traditional
microphones, the PDM microphone may be implemented
without an analog to digital converter (ADC). However,
typical DSPs are not designed to effectively interface with
high rate single-bit data streams like data output by PDM
microphones. In one embodiment, the processing of the
PDM microphone may be implemented by a simple con-
nection between the PDM peripheral and a processor such as
DSP/CPU core via a data store and a data store interface.
The simple connection provides a seamless interface
between the PDM peripheral and the DSP/CPU core. These
simplifications reduce power and area overheads. Unlike in
typical systems, an application processor need not move a
PDM microphone output into a DSP/CPU memory for
“always-on” applications.

The systems and methods described herein are also flex-
ible and dynamically configurable. In one aspect, the PDM
peripheral with SED may generate RSSI and Enoise infor-
mation. The RSSI and Enoise data may be used by the
DSP/CPU core to provide a dynamically configurable detec-
tion threshold. This may give a user flexibility to design
methods to set the detection threshold. In another aspect, the
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RTL block and the firmware block may be programmable
and dynamically configurable. The programming and con-
figuration may be performed on the fly, e.g., to match a
user’s needs. For example, various filters may be provided
in the system, and, in a noisy environment, a filter of a
suitable quality may be used for filtering signals from the
noisy environment. Filter may be activated and/or used
based on an expected environment.

The firmware may provide programmability to support
digital PDM microphones with different specifications. For
instance, the PDM firmware library may contain modules of
various types from which to build a PDM microphone
system or to integrate a PDM microphone into a system. The
firmware may also provide a framework for dynamic con-
figuration. The tradeoff may be set based on an application
scenario.

The architectures described herein have a wide variety of
applications. In one aspect, the architectures are compatible
with various types of power-down modes, e.g., power shut-
off mode. The type of power-down mode used may further
reduce an average power consumed by the system. The
architectures are compatible with a wide variety of DSPs or
CPUs. For example, a system may include a smaller DSP/
CPU core to save power and/or use less area. The architec-
tures may include a DSP/CPU with other integrated cores to
provide other processing functions. For example, the DSP/
CPU may be shared with another application such as audio
playback. This may further reduce the architecture footprint.

While the description here pertains to a voice-triggered
power up mode of operation, the described concepts apply
as well to other “always-on” applications, or “context
aware” applications, which can benefit from a power down
mode, and which can be awakened by other received sensor
data, such as vibration, light or other physical phenomena.
For example, other “always-on” or “context aware” appli-
cations include sensor fusion applications and “always-on”
IoT applications.

FIG. 5 is a simplified block diagram of a system 500
implementing the methods and systems described herein.
The system 500 may include an application processor 508
and a power management integrated circuit (PMIC) 502.
The application processor 508 and the PMIC 502 may be
communicatively coupled. The application processor 508
may include a IP core 504. The IP core may be implemented
according to the methods and systems described herein. For
example, the IP core may be implemented according to the
firmware block 150. As another example, the IP core may be
implemented according to the DSP/CPU core 250. As
another example, the IP core may be implemented according
to firmware running on DSP/CPU core. In an embodiment,
the IP core 504 is configured to perform the methods
described herein. In operation, the IP core 504 may receive
a sound input 506. The IP core 504 may recognize a trigger,
and, responsive to the trigger, signal the PMIC to power on
a host CPU. As discussed herein, the IP core 504 may be
integrated with other cores to provide other audio processing
functionalities.

FIG. 6 is a simplified block diagram of a device 600
implementing the methods and systems described herein. As
shown in FIG. 6, the client 600 may include a processor 602,
a memory system 604, and at least one input/output (1/O)
device 605. The processor may be implemented according to
the methods and systems described herein. For example, the
processor may be implemented according to the firmware
block 150. As another example, the processor may be
implemented according to the DSP/CPU core 250.
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The processor 602, memory system 604, and 1/O
device(s) 605 may be communicatively coupled to each
other. The communication may be implemented in a variety
of ways, e.g., via at least one computer bus and/or bridge
device 608. The I/O device(s) 605 may include network
adapters and/or mass storage devices from which the device
600 may receive commands for executing the methods
described herein. The I/O device(s) 605 may be imple-
mented according to the methods and systems described
herein. For example, the I/O device(s) may be implemented
by the sensor 102. As another example, the [/O device(s)
may be implemented by the PDM microphone 202. The
bridge 608 may be implemented according to the methods
and systems described herein. For example, the bridge may
be implemented according to the RTL block 110. As another
example, the bridge may be implemented according to the
microphone interface peripheral 210.

Although the foregoing description includes several
exemplary embodiments, it is understood that the words that
have been used are words of description and illustration,
rather than words of limitation. Changes may be made
within the purview of the appended claims, as presently
stated and as amended, without departing from the scope and
spirit of the disclosure in its aspects. Although the disclosure
has been described with reference to particular means,
materials and embodiments, the disclosure is not intended to
be limited to the particulars disclosed; rather the disclosure
extends to all functionally equivalent structures, methods,
and uses such as are within the scope of the appended
claims.

As used in the appended claims, the term “computer-
readable medium” may include a single medium or multiple
media, such as a centralized or distributed database, and/or
associated caches and servers that store one or more sets of
instructions. The term shall also include any medium that is
capable of storing, encoding or carrying a set of instructions
for execution by a processor or that cause a computer system
to perform any one or more of the embodiments disclosed
herein.

The computer-readable medium may comprise a non-
transitory computer-readable medium or media and/or com-
prise a transitory computer-readable medium or media. In a
particular non-limiting, exemplary embodiment, the com-
puter-readable medium may include a solid-state memory
such as a memory card or other package that houses one or
more non-volatile read-only memories. Further, the com-
puter-readable medium may be a random access memory or
other volatile re-writable memory. Additionally, the com-
puter-readable medium may include a magneto-optical or
optical medium, such as a disk or tapes or other storage
device to capture carrier wave signals such as a signal
communicated over a transmission medium. Accordingly,
the disclosure is considered to include any computer-read-
able medium or other equivalents and successor media, in
which data or instructions may be stored.

The present specification describes components and func-
tions that may be implemented in particular embodiments
which may operate in accordance with one or more particu-
lar standards and protocols. However, the disclosure is not
limited to such standards and protocols. Such standards are
periodically superseded by faster or more efficient equiva-
lents having essentially the same functions. Accordingly,
replacement standards and protocols having the same or
similar functions are considered equivalents thereof.

The illustrations of the embodiments described herein are
intended to provide a general understanding of the various
embodiments. The illustrations are not intended to serve as
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a complete description of all of the elements and features of
apparatus and systems that utilize the structures or methods
described herein. Many other embodiments may be apparent
to those of skill in the art upon reviewing the disclosure.
Other embodiments may be utilized and derived from the
disclosure, such that structural and logical substitutions and
changes may be made without departing from the scope of
the disclosure. Additionally, the illustrations are merely
representational and may not be drawn to scale. Certain
proportions within the illustrations may be exaggerated,
while other proportions may be minimized. Accordingly, the
disclosure and the figures are to be regarded as illustrative
rather than restrictive.

For example, operation of the disclosed embodiments has
been described in the context of servers and terminals that
embody IP cores. These systems can be embodied in elec-
tronic devices or integrated circuits, such as application
specific integrated circuits, field programmable gate arrays
and/or digital signal processors. Alternatively, they can be
embodied in computer programs that execute on personal
computers, notebook computers, tablets, smartphones or
computer servers. Such computer programs typically are
stored in physical storage media such as electronic-, mag-
netic- and/or optically-based storage devices, where they
may be read to a processor, under control of an operating
system and executed. And, of course, these components may
be provided as hybrid systems that distribute functionality
across dedicated hardware components and programmed
general-purpose processors, as desired.

In addition, in the foregoing Detailed Description, various
features may be grouped or described together the purpose
of streamlining the disclosure. This disclosure is not to be
interpreted as reflecting an intention that all such features are
required to provide an operable embodiment, nor that the
claimed embodiments require more features than are
expressly recited in each claim. Rather, as the following
claims reflect, subject matter may be directed to less than all
of the features of any of the disclosed embodiments. Thus,
the following claims are incorporated into the Detailed
Description, with each claim standing on its own as defining
separately claimed subject matter.

Also, where certain claims recite methods, sequence of
recitation of a particular method in a claim does not require
that that sequence is essential to an operable claim. Rather,
particular method elements or steps could be executed in
different orders without departing from the scope or spirit of
the invention.

What is claimed is:
1. A system to process a sound sample, the system
comprising:
a register transfer level (RTL) block, including:
a first filter to filter the sound sample; and
a firmware block, including:

a processor to parse the stored filtered sound sample
and perform a function corresponding to the parsed
sound sample; and

a second filter to receive and filter the stored filtered sound

sample.

2. The system of claim 1, wherein the firmware block
includes the second filter.

3. A system of claim 1, wherein the RTL block includes
the second filter.

4. The system of claim 1, further comprising a sound
energy detecting device communicatively coupled to the
firmware block and at least one of the first filter and the
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second filter, to wake the processor responsive to a deter-
mination that a characteristic of the filtered sound sample is
above a threshold.

5. The system of claim 4, wherein the characteristic is at
least one of: a signal strength, a noise strength, a strength of
a combination of signal and noise signal.

6. The system of claim 4, wherein the threshold is
determined by at least one of: the processor and the RTL
block.

7. The system of claim 6, wherein the threshold is
determined by the processor.

8. The system of claim 4, wherein the sound energy
detecting device wakes the processor such that the system
monitors an environment of the sound sample.

9. The system of claim 1, further comprising:

an interface to output the stored sound sample in pre-

defined bursts to at least one of the second filter and the
processor; and

a storage apparatus to store the filtered sound sample,

wherein the storage apparatus processes in a first-in-
first-out (FIFO) order.

10. The system of claim 1, wherein the first filter includes
a cascaded integrator-comb (CIC) decimator to decrease the
sample rate of the sound sample.

11. The system of claim 1, wherein the second filter
includes at least one of: a half-band filter and a finite impulse
response (FIR) filter, to decrease the sample rate of the
stored sound sample.

12. The system of claim 1, wherein the firmware block
implements a power-down mode that wakes in response to
an output by the RTL block.

13. The system of claim 1, further comprising a low-
power sound detecting device (LPSD) communicatively
coupled to the second filter and the processor to classify the
sound sample filtered by the second filter and to output the
classification to the processor.

14. The system of claim 1, wherein the RTL block and the
firmware block operate on an output of a pulse density
modulation (PDM) microphone.

15. A computer-implemented method to process a sound
sample using a partitioned register transfer level (RTL)
block and firmware block, the method comprising:

filtering, by the RTL block, the sound sample;

waking, by the RTL block, the firmware block responsive

to a characteristic of the filtered sound sample;
filtering, by the firmware block, the filtered sound sample;
parsing, by the firmware block, the sound sample filtered
by the firmware block; and

performing, by the firmware block, a function correspond-

ing to the parsed sound sample.

16. The method of claim 15, wherein the waking com-
prises waking the firmware block from a power-down mode.
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17. The method of claim 15, wherein the filtering by the
RTL block includes a first decimation and the filtering by the
firmware block includes a second decimation.

18. The method of claim 15, further comprising:

measuring at least one of: a signal strength and a noise

strength of the filtered sound sample; and
determining, by the RTL block, the characteristic of the
filtered sound sample based on the measuring; and
wherein the waking is performed responsive to a deter-
mination that the characteristic of the filtered sound
sample is above a threshold.

19. The method of claim 15, wherein the firmware block
enters a power-down mode responsive to a determination
that at least one of: a signal strength and a noise strength of
the filtered sound sample is below the threshold during a
predefined time period.

20. The method of claim 15, wherein the threshold is
determined by the firmware block.

21. The method of claim 15, further comprising, prior to
the parsing, classifying the sound sample filtered by the
firmware block; and

wherein the parsing is based on the classifying.

22. A non-transitory computer-readable medium storing
program instructions that, when executed, cause an RTL
block and a firmware block to perform a method to process
audio, the method comprising:

filtering, by the RTL block, the sound sample;

waking, by the RTL block, the firmware block responsive

a characteristic of the filtered sound sample;

filtering, by the firmware block, the filtered sound sample;

parsing, by the firmware block, the sound sample filtered

by the firmware block; and

performing, by the firmware block, a function correspond-

ing to the parsed sound sample.

23. The non-transitory computer-readable medium of
claim 22, further comprising:

measuring, by the RTL block, at least one of: a signal

strength and a noise strength of the filtered sound
sample; and
determining, by the RTL block, the characteristic of the
filtered sound sample based on the measuring; and

wherein the waking is performed responsive to a deter-
mination that the characteristic of the filtered sound
sample is above a threshold.

24. The non-transitory computer-readable medium of
claim 22, wherein the waking comprises waking the firm-
ware block from a power-down mode.

25. The non-transitory computer-readable medium of
claim 22, wherein at least one of the RTL block and the
firmware block is dynamically configurable.
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